Prediction of Coast Down Time for Mechanical Faults in Rotating Machinery Using Artificial Neural Networks
نویسندگان
چکیده
Misalignment and unbalance are the major concerns in rotating machinery. When the power supply to any rotating system is cutoff, the system begins to lose the momentum gained during sustained operation and finally comes to rest. The exact time period from when the power is cutoff until the rotor comes to rest is called Coast Down Time. The CDTs for different shaft cutoff speeds were recorded at various misalignment and unbalance conditions. The CDT reduction percentages were calculated for each fault and there is a specific correlation between the CDT reduction percentage and the severity of the fault. In this paper, radial basis network, a new generation of artificial neural networks, has been successfully incorporated for the prediction of CDT for misalignment and unbalance conditions. Radial basis network has been found to be successful in the prediction of CDT for mechanical faults in rotating machinery. Keywords—Coast Down Time, Misalignment, Unbalance, Artificial Neural Networks, Radial Basis Network.
منابع مشابه
A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملBearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm
Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...
متن کاملIdentification of Unbalance and Looseness in Rotor Bearing Systems using Neural Networks
In diagnosing mechanical faults of rotating machinery, it is very important to know the vibration feature of the machine with various forms of fault. A rotor system with fault is generally a complicated non-linear vibrating system. Its vibration is in a very complex form. Rotating machinery is very popular in industrial applications. Most of the mechanical failures are due to vibrations. It is ...
متن کاملRotor Faults Diagnosis Using Artificial Neural Networks and Support Vector Machines
Unbalance and misalignment are the commonly occurring faults in rotating mechanical systems. These faults are caused mainly due to improper installation or premature failure of the machine components. Detection and diagnosis of faults in rotating machinery is crucial for its optimal performance. In this study artificial neural networks (ANN) and support vector machine (SVM) techniques have been...
متن کاملEstimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks
Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...
متن کامل